First Semester MCA Degree Examination, December 2010 **Fundamentals of Computer Organization**

Time: 3 hrs. Max. Marks:100

Note: Answer any FIVE full questions.

- 1 Perform the following number conversions:
 - $(CA2)_{16} = (?)_{10}$
- ii) $(628)_8 = (?)_{10}$
- iii) $(1101)_2 = (?)_{10}$
- iv) $(675)_{16} = (?)_{2}$
- v) $(10101010.101010)_2 = (?)_{16}$

(10 Marks)

b. Realize XNOR using NAND gates only.

(05 Marks)

- Simplify and implement with AND, OR and NOT gates: $\overline{A}.B + A.\overline{B} + A.B = Y$. (05 Marks)
- 2 State and explain DeMorgan's theorem and simplify, a.
 - i) (A+B+C).(A+B+C) = Y
- ii) (A+B)(A+B)

(09 Marks)

b. Reduce the following function using K-map technique:

Y = A.B.C.D + A.B.C.D + A.B.CD + A.B.CD + A.B.CD + A.B.CD + A.B.CD

(06 Marks)

With a neat circuit, explain how you convert inverters to gates.

(05 Marks)

- 3 Explain different functional units of a computer. Mention the function of the processor registers, i) PC ii) MAR iii) IR. (08 Marks)
 - b. Explain how the performance of a computer can be measured. What are the measures to improve the performance of computer? (06 Marks)
 - Explain: Byte addressability

Big endian assignment

Little endian assignment

(06 Marks)

- Explain with an example, the different addressing modes in machine instructions. (08 Marks) 4 a.
 - Write an assembly language program to find the largest of N numbers. b.
- (06 Marks) (06 Marks)
- What is a subroutine? Explain one stack frame with an example. c.
 - What is the necessity of DMA controller? Explain the methods of bus arbitration. (08 Marks)
- What is secondary storage? Explain semiconductor RAM memories. b.
- (06 Marks)
- What is an interrupt? Explain daisy chain of interrupt priority schemes. c.
- (06 Marks)
- 6 With the block diagram, explain the operation of a 16 megabit DRAM configured as a. 2M X 8. (08 Marks)
 - b. Explain virtual memories.

(06 Marks)

c. Define hit ratio and miss penalty for cache access and calculate the average access time, given a hit ratio of 0.92, cache access time of 40 ns and main memory access time of 300 ns.

(06 Marks)

- 7 Explain the design of fast adders and perform addition and subtraction of signed numbers (-4) and (+5). (10 Marks)
 - b. Perform multiplication of (+13) and (-6), using multiplier bit pair recording technique.
 - Represent 2.34×10³ using single precision and double precision floating point number.

(05 Marks)

(05 Marks)

- 8 Write short notes on:
 - Difference between RISC and CISC.
 - b. Multiprocessors and multi-computer.
 - Memory organization. c.
 - Buses. d.

(20 Marks)

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

5

a.